CSCI-564 CONSTRAINT PROCESSING AND HEURISTIC SEARCH

LECTURE 20 - CONSTRAINT PROCESSING

Dr. Jean-Alexis Delamer

Constraint Processing

- What is a constraint?
- A constraint is a restriction on a space of possibilities.
- It is a piece of knowledge that narrows the scope of this space.
- Do you have any example of a constraint?
- The amount of memory in a PC.
- The number of seats in a car.
- Hours in a day.
- Money in the bank.

Constraint Processing

- So, we're always solving constraint satisfaction problem:
- Saving money but still going in vacation.
- Etc.
- Try to think about the complexity of the problem when the number of constraints and variables grow.
- Any example of hard constraint problem (for a human)?
- Optimal seating arrangement for a dinner party.
- It can be complicated.

Constraint Processing

- Now imagine the difficulty in scheduling classrooms for the fall term.
- What constraint do we have?
- A classroom for every course.
- Only one class per classroom simultaneously.
- No professor can teach in two different classroom at the same time.
- No class during the night.
- The capacity of the classroom.
- Some class cannot be scheduled at the same time.
- Etc.

Constraint Processing

- It is a problem very hard for a group of human.
- But is it for a computer?
- Yes, in general it is NP-Hard.
- You cannot expect to design algorithms that scale efficiently for every problem.

Constraint Processing

- But!
- We can identify special properties of a problem class.
- Help to design general algorithm that are efficient for this class.
- Algorithms have been developed for restricted subclasses.
- Solve them efficiently.
- Or propose a good approximation.
- They are called tractable classes.

Constraint Processing

- Constraint satisfaction problems (CSP) incudes two important components:
- Variable and domains.
- Constraints.
- Variables:
- Objects or items that can take on a variety of values. (Like in math).
- The set of possible values for a variable is called its domain.
- Constraints:
- Rules that impose a limitation on the values that a variable may be assigned.

Constraint Processing

- Example: Seating arrangement.
- What would be the variables?
- Chairs
- What would be the domain?
- The list of guests.
- Same domain for each variable.
- What are the constraints?
- The hosts must sit at the two ends of the table.
- Two feuding guests must not be placed next to or directly opposite one another.

Constraint Processing

- There is often more than one way to model a problem.
- In the previous example:
- Variables could be the guests.
- And the domain the chairs.
- In this example it doesn't make any difference.
- However, in other problem (more complex) some model make it easier to obtain a solution.

Constraint Processing

- Constraint problems are often referred as constraint network.
- The constraints dependency structure are captured naturally with a network.
- Do you think that CSP is just about finding a solution?
- Determine whether a solution exist.
- Finding one or all solution.
- Finding the optimal solution.
- Determine if a partial solution can be extended to a full solution.

N-Queens Problem

- First example (Informal).
- Variables:
- One for each column.
- x_{1}, \ldots, x_{n}.
- Domains:
- Possible row positions.
- $D_{i}=\{1, \ldots, n\}$
- Constraints:

- On each pair of columns, two queens must no share
- A row
- Or a diagonal

Constraint Processing

- A constraint network $R=(X, D, C)$
- A set of finite variables $X=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$
- A set of domains $D=\left\{D_{1}, \ldots, D_{n}\right\}$
- Where $D_{i}=\left\{v_{1}, \ldots, v_{k}\right\}$
- A set of constraints $C=\left\{C_{1}, \ldots, C_{n}\right\}$
- Where $C_{i}=\left(S_{i}, R_{i}\right), R_{i}$ expresses allowed tuples called scope.
- A solution is an assignment to all variables that satisfies all constraints (join of all relations).

N-Queens Problem

- We define our constraint network $R=(X, D, C)$.
- $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$
- $D=\{1,2,3,4\}$
- $C=\left\{R_{12}, R_{13}, R_{14}, R_{23}, R_{24}, R_{34}\right\}$
- On each pair of columns, two queens must no share a row or a diagonal

$$
R_{12}=\{ \}
$$

N-Queens Problem

- We define our constraint network $R=(X, D, C)$.
- $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$
- $D=\{1,2,3,4\}$
- $C=\left\{R_{12}, R_{13}, R_{14}, R_{23}, R_{24}, R_{34}\right\}$
- On each pair of columns, two queens must no share a row or a diagonal

$$
R_{12}=\{ \}
$$

N-Queens Problem

- We define our constraint network $R=(X, D, C)$.
- $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$
- $D=\{1,2,3,4\}$
- $C=\left\{R_{12}, R_{13}, R_{14}, R_{23}, R_{24}, R_{34}\right\}$
- On each pair of columns, two queens must no share a row or a diagonal

$$
R_{12}=\{ \}
$$

Share a diagonal.

N-Queens Problem

- We define our constraint network $R=(X, D, C)$.
- $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$
- $D=\{1,2,3,4\}$
- $C=\left\{R_{12}, R_{13}, R_{14}, R_{23}, R_{24}, R_{34}\right\}$
- On each pair of columns, two queens must no share a row or a diagonal

$$
R_{12}=\{(1,3)\}
$$

Respect the constraint.

N-Queens Problem

- We define our constraint network $R=(X, D, C)$.
- $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$
- $D=\{1,2,3,4\}$
- $C=\left\{R_{12}, R_{13}, R_{14}, R_{23}, R_{24}, R_{34}\right\}$
- On each pair of columns, two queens must no share a row or a diagonal

$$
R_{12}=\{(1,3),(1,4)\}
$$

Respect the constraint.

N-Queens Problem

- We define our constraint network $R=(X, D, C)$.
- $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$
- $D=\{1,2,3,4\}$
- $C=\left\{R_{12}, R_{13}, R_{14}, R_{23}, R_{24}, R_{34}\right\}$
- On each pair of columns, two queens must no share a row or a diagonal

$$
R_{12}=\{(1,3),(1,4)\}
$$

Share a diagonal.

N-Queens Problem

- We define our constraint network $R=(X, D, C)$.
- $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$
- $D=\{1,2,3,4\}$
- $C=\left\{R_{12}, R_{13}, R_{14}, R_{23}, R_{24}, R_{34}\right\}$
- On each pair of columns, two queens must no share a row or a diagonal
$R_{12}=\{(1,3),(1,4),(3,1)\}$

Respect the constraints

N-Queens Problem

- We define our constraint network $R=(X, D, C)$.
- $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$
- $D=\{1,2,3,4\}$
- $C=\left\{R_{12}, R_{13}, R_{14}, R_{23}, R_{24}, R_{34}\right\}$
- On each pair of columns, two queens must no share a row or a diagonal
$R_{12}=\{(1,3),(1,4),(3,1),(4,2)\}$

Respect the constraints

N-Queens Problem

- We define our constraint network $R=(X, D, C)$.
- $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$
- $D=\{1,2,3,4\}$
- $C=\left\{R_{12}, R_{13}, R_{14}, R_{23}, R_{24}, R_{34}\right\}$
- On each pair of columns, two queens must no share a row or a diagonal

$$
R_{12}=\{(1,3),(1,4),(3,1),(4,2),(4,3)\}
$$

Respect the constraints

N-Queens Problem

- We define our constraint network $R=(X, D, C)$.
- $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$
- $D=\{1,2,3,4\}$
- $C=\left\{R_{12}, R_{13}, R_{14}, R_{23}, R_{24}, R_{34}\right\}$
- On each pair of columns, two queens must no share a row or a diagonal

$$
R_{12}=\{(1,3),(1,4),(3,1),(4,2),(4,3)\}
$$

Share a diagonal.

N-Queens Problem

- We define our constraint network $R=(X, D, C)$.
- $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$
- $D=\{1,2,3,4\}$
- $C=\left\{R_{12}, R_{13}, R_{14}, R_{23}, R_{24}, R_{34}\right\}$
- On each pair of columns, two queens must no share a row or a diagonal

$$
R_{12}=\{(1,3),(1,4),(3,1),(4,2),(4,3)\}
$$

N-Queens Problem

- We define our constraint network $R=(X, D, C)$.
- $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$
- $D=\{1,2,3,4\}$
- $C=\left\{R_{12}, R_{13}, R_{14}, R_{23}, R_{24}, R_{34}\right\}$
- On each pair of columns, two queens must no share a row or a diagonal

$$
\begin{aligned}
& R_{12}=\{(1,3),(1,4),(3,1),(4,2),(4,3)\} \\
& R_{13}=\{(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3)\} \\
& R_{14}=\{(1,2),(1,3),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,2),(4,3)\} \\
& R_{23}=\{(1,3),(1,4),(2,4),(3,1),(4,1),(4,2)\} \\
& R_{24}=\{(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3)\} \\
& R_{34}=\{(1,3),(1,4),(2,4),(3,1),(4,1),(4,2)\}
\end{aligned}
$$

Solutions of a Constraint Network

- When a variable is assigned a value, we say that the variable has been instantiated.
- An instantiation of a set of variables $\left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\}$ is a tuple of ordered pairs $\left(\left(x_{i_{1}}, a_{i_{1}}\right), \ldots,\left(x_{i_{k}}, a_{i_{k}}\right)\right)$
- Where each pair (x, a) represents the assignment of value a to x.
- We can abbreviate $\bar{a}=\left\{a_{1}, \ldots, a_{i}\right\}$.

Solutions of a Constraint Network

- Satisfying constraint:
- An instantiation satisfies a constraint (S, R) iff
- It is defined over all the variables in S
- And the components of the tuple \bar{a} are present in the relation R
- Example:
- Let $R_{x y z}=\{(1,1,1),(1,0,1),(0,0,0)\}$
- An instantiation \bar{a} with a scope $\{x, y, z, t\}$, such $\bar{a}=\{(x, 1),(y, 1),(z, 1),(t, 0)\}$.
- It satisfies the constraint, because $(1,1,1)$ is in $R_{x y z}$.
- An instantiation \bar{a} with a scope $\{x, y, z, t\}$, such $\bar{a}=\{(x, 1),(y, 0),(z, 0),(t, 0)\}$.
- It does not satisfy the constraint, because $(1,0,0)$ is not in $R_{x y z}$.

Solutions of a Constraint Network

- A partial instantiation is consistent if:
- It satisfies all the constraints whose scopes have no uninstantiated variables.
- A solution of a constraint network:
- Is an instantiation of all its variables that satisfies all the constraints.

N-Queens Problem

- Let us consider $\bar{a}=(1,4,2)$.
- It is consistent instantiation.
- It is not a part of a solution.

N-Queens Problem

A solution: $\bar{a}=(2,4,1,3)$

A solution: $\bar{a}=(3,1,4,2)$

Exercise: Crossword puzzle

1	2	3	4	5
		6		7
	8	9	10	11
		12	13	

\{HOSES, LASER, SHEET, SNAIL, STEER, ALSO, EARN, HIKE, IRON, SAME, EAT, LET, RUN, SUN, TEN, YES, BE, IT, NO, US\}

